Search results for "Mathematical Physics"
showing 10 items of 2687 documents
Extensions and corona decompositions of low-dimensional intrinsic Lipschitz graphs in Heisenberg groups
2020
This note concerns low-dimensional intrinsic Lipschitz graphs, in the sense of Franchi, Serapioni, and Serra Cassano, in the Heisenberg group $\mathbb{H}^n$, $n\in \mathbb{N}$. For $1\leq k\leq n$, we show that every intrinsic $L$-Lipschitz graph over a subset of a $k$-dimensional horizontal subgroup $\mathbb{V}$ of $\mathbb{H}^n$ can be extended to an intrinsic $L'$-Lipschitz graph over the entire subgroup $\mathbb{V}$, where $L'$ depends only on $L$, $k$, and $n$. We further prove that $1$-dimensional intrinsic $1$-Lipschitz graphs in $\mathbb{H}^n$, $n\in \mathbb{N}$, admit corona decompositions by intrinsic Lipschitz graphs with smaller Lipschitz constants. This complements results that…
The convective eigenvalues of the one–dimensional p–Laplacian as p → 1
2020
Abstract This paper studies the limit behavior as p → 1 of the eigenvalue problem { − ( | u x | p − 2 u x ) x − c | u x | p − 2 u x = λ | u | p − 2 u , 0 x 1 , u ( 0 ) = u ( 1 ) = 0 . We point out that explicit expressions for both the eigenvalues λ n and associated eigenfunctions are not available (see [16] ). In spite of this hindrance, we obtain the precise values of the limits lim p → 1 + λ n . In addition, a complete description of the limit profiles of the eigenfunctions is accomplished. Moreover, the formal limit problem as p → 1 is also addressed. The results extend known features for the special case c = 0 ( [6] , [28] ).
A singularly perturbed Kirchhoff problem revisited
2020
Abstract In this paper, we revisit the singularly perturbation problem (0.1) − ( ϵ 2 a + ϵ b ∫ R 3 | ∇ u | 2 ) Δ u + V ( x ) u = | u | p − 1 u in R 3 , where a , b , ϵ > 0 , 1 p 5 are constants and V is a potential function. First we establish the uniqueness and nondegeneracy of positive solutions to the limiting Kirchhoff problem − ( a + b ∫ R 3 | ∇ u | 2 ) Δ u + u = | u | p − 1 u in R 3 . Then, combining this nondegeneracy result and Lyapunov-Schmidt reduction method, we derive the existence of solutions to (0.1) for ϵ > 0 sufficiently small. Finally, we establish a local uniqueness result for such derived solutions using this nondegeneracy result and a type of local Pohozaev identity.
Abstracts from the CECAM workshop on computer simulations of cellular automata
1989
Elliptische Integrale, Thetafunktionen und elliptische Funktionen
1948
Es bedeute W die Quadratwurzel aus einem Polynom dritten oder vierten Grades in einer Veranderlichen z mit lauter verschiedenen Nullstellen, und R (z, W) eine rationale Funktion von z und W. Das unbestimmte Integral von R als Funktion von z heist dann ein elliptisches Integial, falls es sich nicht auf elementare Funktionen reduzieren last.
p −1-Linear Maps in Algebra and Geometry
2012
At least since Habousch’s proof of Kempf’s vanishing theorem, Frobenius splitting techniques have played a crucial role in geometric representation theory and algebraic geometry over a field of positive characteristic. In this article we survey some recent developments which grew out of the confluence of Frobenius splitting techniques and tight closure theory and which provide a framework for higher dimension geometry in positive characteristic. We focus on local properties, i.e. singularities, test ideals, and local cohomology on the one hand and global geometric applicatioms to vanishing theorems and lifting of sections on the other.
Vertical versus horizontal Sobolev spaces
2020
Let $\alpha \geq 0$, $1 < p < \infty$, and let $\mathbb{H}^{n}$ be the Heisenberg group. Folland in 1975 showed that if $f \colon \mathbb{H}^{n} \to \mathbb{R}$ is a function in the horizontal Sobolev space $S^{p}_{2\alpha}(\mathbb{H}^{n})$, then $\varphi f$ belongs to the Euclidean Sobolev space $S^{p}_{\alpha}(\mathbb{R}^{2n + 1})$ for any test function $\varphi$. In short, $S^{p}_{2\alpha}(\mathbb{H}^{n}) \subset S^{p}_{\alpha,\mathrm{loc}}(\mathbb{R}^{2n + 1})$. We show that the localisation can be omitted if one only cares for Sobolev regularity in the vertical direction: the horizontal Sobolev space $S_{2\alpha}^{p}(\mathbb{H}^{n})$ is continuously contained in the vertical Sobolev sp…
Random Tensor Theory: Extending Random Matrix Theory to Mixtures of Random Product States
2012
We consider a problem in random matrix theory that is inspired by quantum information theory: determining the largest eigenvalue of a sum of p random product states in $${(\mathbb {C}^d)^{\otimes k}}$$ , where k and p/d k are fixed while d → ∞. When k = 1, the Marcenko-Pastur law determines (up to small corrections) not only the largest eigenvalue ( $${(1+\sqrt{p/d^k})^2}$$ ) but the smallest eigenvalue $${(\min(0,1-\sqrt{p/d^k})^2)}$$ and the spectral density in between. We use the method of moments to show that for k > 1 the largest eigenvalue is still approximately $${(1+\sqrt{p/d^k})^2}$$ and the spectral density approaches that of the Marcenko-Pastur law, generalizing the random matrix…
Commissioning of the vacuum system of the KATRIN Main Spectrometer
2016
The KATRIN experiment will probe the neutrino mass by measuring the β-electron energy spectrum near the endpoint of tritium β-decay. An integral energy analysis will be performed by an electro-static spectrometer (``Main Spectrometer''), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m[superscript 3], and a complex inner electrode system with about 120 000 individual parts. The strong magnetic field that guides the β-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips ha…
Gasdynamic ECR ion source for negative ion production
2018
H− ion sources are needed in various areas of accelerator technology, such as beam injection into cyclotrons and storage rings and as a part of neutral beam injectors for plasma heating in experimental facilities studying thermonuclear fusion. It was recently demonstrated that gasdynamic ion source based on ECR discharge in a simple mirror trap is very efficient for proton beam production [1]. Here we use the gasdynamic plasma source as the first stage driver of volumetric negative ion production through dissociative electron attachment (DEA) [2]. Experiments were performed with a pulsed 37 GHz / up to 100 kW gyrotron radiation in a dual-trap magnetic system, which consists of two identical…